
Ansible Storage Role Documentation
Release 0.0.1alpha

Gorka Eguileor

Jun 22, 2018

Contents:

1 Introduction 3
1.1 Features . 3
1.2 Concepts . 4
1.3 Configuration . 4
1.4 Example . 5

2 Installation 7
2.1 Requirements . 7
2.2 Consumer requirements . 7

3 Usage 11
3.1 Configuration . 11
3.2 Resource addressing . 12
3.3 Operations . 13

4 Examples 19
4.1 Kaminario backend . 19
4.2 Populating data . 19
4.3 Ceph backend . 21
4.4 Bulk create . 23
4.5 Migrating data . 24

5 Supported storage 27
5.1 Block devices . 27
5.2 Shared filesystems . 30
5.3 Object storage . 30

6 Storage Providers 31
6.1 Block storage . 31
6.2 Shared filesystems . 35
6.3 Object storage . 35

7 Internals 37

8 Future work 39

i

ii

Ansible Storage Role Documentation, Release 0.0.1alpha

The Ansible Storage Role is a vendor agnostic abstraction providing infrastructure administrators with automation for
storage solutions and to access provisioned resources.

Contents: 1

https://galaxy.ansible.com/Akrog/storage/

Ansible Storage Role Documentation, Release 0.0.1alpha

2 Contents:

CHAPTER 1

Introduction

The Ansible Storage Role is a vendor agnostic abstraction providing infrastructure administrators with automation for
storage solutions and to access provisioned resources.

Thanks to this abstraction it’s now possible to write reusable playbooks that can automate tasks on any of the supported
storage arrays.

The role will provide an abstraction for multiple storage types:

• Block storage.

• Shared filesystems.

• Object storage.

Use cases:

• Automate provisioning of volumes for:

– Bare metal hosts.

– VMs managed via the virt Ansible module.

– VMs managed on oVirt, OpenStack, and VMWare.

– Cloud providers.

• Take periodical snapshots of provisioned volumes.

1.1 Features

At the moment the only supported storage type is Block storage, with a limited number of features:

• Get backend stats

• Create volumes

• Delete volumes

3

https://docs.ansible.com/ansible/latest/modules/virt_module.html

Ansible Storage Role Documentation, Release 0.0.1alpha

• Attach volumes

• Detach volumes

There are plans to add new features and provider for new storage types. Refer to the Future work section for informa-
tion on the plans for the role.

1.2 Concepts

The Storage Role includes support for over 80 block storage drivers out of the box with the default provider, and this
list can be expanded even further with new storage providers.

A provider is the Ansible module responsible for carrying out operations on the storage hardware. Each provider must
support at least one specific hardware from a vendor, but it may as well support more, like the default provider does.

Even though there are only two providers at the moment, they support a large number of different storage vendors and
storage backends.

To expose the functionality of these providers, the Storage Role introduces the concept of backends. A backend is
constructed passing a specific configuration to a provider in order to manage a specific storage hardware.

There are two types of nodes in the Storage Role, controllers and consumers.

Fig. 1: Ansible Storage Role nodes diagram

Controllers have access to the storage management network and know how to connect to the storage hardware man-
agement interface and control it. For example to create and export a volume.

Consumers only need access to the storage data network in order to connect to the resources we have provisioned. For
example to connect a volume via iSCSI.

1.3 Configuration

Before we can provision or use our storage, we need to setup the controller node, the one that will manage our storage.

There are two types of configuration options: One provides global configuration options for the provider, and the other
provides the configuration required to access the storage’s management interface.

In both cases the valid contents for these configuration parameters depend on the provider being used, as each provider
has different options.

The names of the parameters are:

• storage_backends is a dictionary providing the configuration for all the backends we want the controller node to
manage.

• storage_$PROVIDER_config and storage_$PROVIDER_consumer_config are the global provider configuration
options to over-ride the defaults. Providers are expected to provide sensible defaults to avoid users having to
change these.

All the information related to these configuration options is available on the providers’ section, but here’s an example
of how to setup a node to manage an XtremIO array:

4 Chapter 1. Introduction

Ansible Storage Role Documentation, Release 0.0.1alpha

- hosts: storage_controller
vars:
storage_backends:

xtremio:
volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
san_ip: w.x.y.z
xtremio_cluster_name: CLUSTER-NAME
san_login: admin
san_password: nomoresecrets

roles:
- {role: storage, node_type: controller}

1.4 Example

Assuming our playbook has already been configured a backend on the controller node, for example like we did above,
we can proceed to use this backend to provision and use the volumes like this:

- hosts: storage_consumers
roles:

- {role: storage, node_type: consumer}
tasks:

- name: Create volume
storage:

resource: volume
state: present
size: 1

register: vol

- name: Connect volume
storage:

resource: volume
state: connected

register: conn

- debug:
msg: "Volume {{ vol.id }} attached to {{ conn.path }}"

- name: Disconnect volume
storage:

resource: volume
state: disconnected

- name: Delete volume
storage:

resource: volume
state: absent

1.4. Example 5

Ansible Storage Role Documentation, Release 0.0.1alpha

6 Chapter 1. Introduction

CHAPTER 2

Installation

Like with any other role, before you can use this role in your playbooks you’ll need to install it in the system where
the playbooks are going to be run:

$ ansible-galaxy install Akrog.storage

Once installed, you can use it in your playbooks. Usage of the role is covered in the Usage section.

The role has been tested with Ansible >= 2.4.1, but other versions may also work.

2.1 Requirements

Ansible Storage Role providers have specific requirements to manage and connect to the storage.

The Ansible Storage Role will try to automatically handle all the requirements for the nodes based on the selected
provider and type of node. This means that using the storage role on nodes will install packages in order to perform
the node’s tasks (manage storage, or consume storage).

Attention: Right now requirements management has only been included for Fedora, CentOS, and RHEL.

Each storage provider has its own requirements, and they are usually different for the controller and the consumer
nodes. Being lighter on the consumer nodes. Refer to the providers section for information on the requirements of
each provider.

2.2 Consumer requirements

At the time of this writing the consumer role can’t auto detect dependencies based on the connection type of the
backends. Though we expect this to change in the future, at the moment any connection specific packages to connect
volumes, need to be already installed in the system or added via tasks in the playbook.

7

Ansible Storage Role Documentation, Release 0.0.1alpha

Below are some of the packages required to use:

• Multipathing

• iSCSI

• Ceph/RBD

Other connection types will have different requirements. Please report an issue for any missing connection types and
we’ll add them.

2.2.1 Multipathing

Block storage multipathing requires package device-mapper-multipath to be installed, configured, and running. We
can do this with a task or in the command line:

yum install device-mapper-multipath
mpathconf --enable --with_multipathd y \
> --user_friendly_names n \
> --find_multipaths y
systemctl enable --now multipathd

Or as Ansible tasks:

- name: Install multipath package
package:
name: device-mapper-multipath
state: present

become: yes

- name: Create configuration
command: mpathconf --enable --with_multipathd y --user_friendly_names n --find_

→˓multipaths y
args:

creates: /etc/multipath.conf
become: yes

- name: Start and enable on boot the multipath daemon
service:

name: multipathd
state: started
enabled: yes

become: yes

2.2.2 iSCSI

To use iSCSI we need to install, configure, and run the iscsi-initiator-utils package if it’s not already there:

yum install iscsi-initiator-utils
[! -e /etc/iscsi/initiatorname.iscsi] \
> && echo InitiatorName=`iscsi-iname` > /etc/iscsi/initiatorname.iscsi
systemctl enable --now iscsid

Or as Ansible tasks:

8 Chapter 2. Installation

https://github.com/Akrog/ansible-role-storage/issues/new

Ansible Storage Role Documentation, Release 0.0.1alpha

- name: Install iSCSI package
package:
name: iscsi-initiator-utils
state: present

become: yes

- name: Create initiator name
shell: echo InitiatorName=`iscsi-iname` > /etc/iscsi/initiatorname.iscsi
args:

creates: /etc/iscsi/initiatorname.iscsi
become: yes

- name: Start and enable on boot the iSCSI initiator
service:

name: iscsid
state: started
enabled: yes

become: yes

2.2.3 Ceph/RBD

For Ceph/RBD connections we need to install the ceph-common package.

2.2. Consumer requirements 9

Ansible Storage Role Documentation, Release 0.0.1alpha

10 Chapter 2. Installation

CHAPTER 3

Usage

In this section we’ll cover how to use the storage role, the different operations available, their return values, how to
address resources in the operations, and several examples.

One of the biggest differences between the Storage Role and other roles is that in this role it is recommended to include
your storage tasks on the consumer nodes, even if part of the tasts are actually executed by the controller.

Instead of creating a task for the controller node to create as many volumes as consumer nodes we have and store the
results in variables (or use a naming template), and then on the consumer nodes have a task that attaches one of those
volumes to each node, we just have a task on the consumers to create the volume and connect it.

This way there’s no need for variables or naming templates, and the creation and attaching tasks are together. This
helps simplify the playbooks and the number of variables we have to move around in our playbooks, resulting in
greater readability.

3.1 Configuration

The role needs to know what type of node we are defining, this is done using the node_type parameter. Acceptable
values are controller and consumer. The default being consumer.

Note: When a node acts as controller and consumer we have to define it as two separate role entries. There is no
controller-consumer or all node types.

Here’s an example of how to configure a node to be the controller and a consumer.

- hosts: storage_controller
vars:

[...]
roles:

- { role: storage, node_type: controller }
- { role: storage, node_type: consumer }

11

Ansible Storage Role Documentation, Release 0.0.1alpha

For a controller node, the role needs to know the backends it’s going to be managing in order to set them up. A single
controller node can manage multiple backends, which are configured using the storage_backends variable.

The keys of the storage_backends dictionary define the IDs of the backends and must be preserved between runs to
be able to access previously provisioned resources. If we change the backend IDs (key in the dictionary) we will no
longer be able to access older resources.

The value part of each entry in the storage_backends dictionary corresponds to another dictionary, this one with the
configuration of the specific backend. The key-value pairs in this dictionary will vary from one provider to another.
The only shared key between them is the provider key used to select the provider we want to use for this backend.

The default value for the provider key is cinderlib, which is the default provider. When using the default value it is
common practice to not include the provider key from the configuration.

We can have backends from different providers configured on the same controller node. For example, we can have
one using the default provider and another using the cinderclient provider.

- hosts: storage_controller
vars:

storage_backends:
backend1:

[...]
backend2:

provider: cinderclient
[...]

roles:
- { role: storage, node_type: controller }

A list of available parameters we can pass to each provider can be found in the providers’ section.

Attention: Controller nodes must always be defined and setup in the playbooks before any storage can be used
on a consumer node.

3.2 Resource addressing

In this section we’ll cover the rules that are applied by the role to locate resources for the purposes of idempotency
and resource addressing.

The storage role is modestly smart about locating resources, reducing the amount of information required to pass on
task.

Volumes, which are the primary resource available at this moment, have the following attributes:

• resource: Type of the resource, must be volume.

• backend: Backend id.

• provider: Provider for the backend.

• host: Who “owns” this backend.

• id: UUID for the resource.

• name: User defined identifier for the volume.

• size: Size of the volume in GBi.

The way providers identify resources is by applying the parameters passed to tasks as if they were filters. If the result
of applying the filters returns more than one resource, the provider will return an error.

12 Chapter 3. Usage

Ansible Storage Role Documentation, Release 0.0.1alpha

For single backend controllers there’s no need to pass backend or provider parameters, as they will default to the only
configured backend. If we have configured multiple backends and at lest one of them is the default provider, then
it will default to the first backend that was added. If there are multiple backends and none of them uses the default
provider, then the role won’t be able to determine a default value for these parameters.

Default value for host is the FQDN of the consumer node. Thanks to this, if we create resources as recommended, in a
task on the consumer node, we won’t need to create complicated templates to address volumes when performing tasks
on multiple consumers.

Now that we know the basics of addressing resources it’s probably best to have a look at examples of how it affects
operations. In each one of the Operations we’ll present different addressing situations using the backends defined in
the previous Configuration section, where we have 2 backends:

• backend1 using the cinderlib provider.

• backend2 using the cinderclient provider.

3.3 Operations

3.3.1 Create

The most basic, and most common, operation is creating a volume on a backend, which is accomplished by setting the
state of a volume resource to present. The default state for a volume is present, so there’s no need to pass it. There are
only 2 required attributes that must be passed on a create task: resource and size.

The task provides the following keys in the returned value at the rool level:

Key Contents
type Type of resource. Now it can only be volume.
backend ID of the backend where the volume exists. Matches the key provided in storage_backends.
host Who “owns” this backend.
id Resource’s ID generated by the provider. Most providers use a UUID.
name User defined identifier for the volume.
size Size of the volume in GBi.

Here’s the smallest task that can be used to create a volume:

- storage:
resource: volume
size: 1

We only have 2 backends, and only one of them uses the default provider, so following the addressing rules the volume
will be created on backend1. This create task is equivalent to:

- storage:
resource: volume
state: present
size: 1
backend: backend1
provider: cinderlib

If we wanted to create the volume on backend2, we would have to specify the backend or the provider. Passing the
provider is also enough as there’s only 1 backend for each provider:

3.3. Operations 13

Ansible Storage Role Documentation, Release 0.0.1alpha

- storage:
resource: volume
size: 1
backend: backend2

The rest of the parameters will use defaults (state: present) or be detected automatically based on provided parameters
(provider: cinderclient).

Creating these 2 volumes on the same node doesn’t require any additional parameters as each one is going to different
backends:

- storage:
resource: volume
size: 1

- storage:
resource: volume
size: 1
backend: backend2

But if we try to do the same to create 2 volumes of the same size on the same backend like this:

- storage:
resource: volume
size: 1

- storage:
resource: volume
size: 1

We will end with only 1 volume, as the second call will be considered as a repeated call by the controller node. And
since these are idempotent operations no new volume will be created.

To create multiple volumes of the same size on the same backend we need to use the name attribute. Providing it just
in one of the tasks is enough, but we recommend passing it to both:

- storage:
resource: volume
size: 1
name: first-volume

- storage:
resource: volume
size: 1
name: second-volume

If each one of our volumes has a different size, then we don’t need to provide a name, as one call cannot be mistaken
for the other:

- storage:
resource: volume
size: 1

- storage:
resource: volume
size: 2

14 Chapter 3. Usage

Ansible Storage Role Documentation, Release 0.0.1alpha

3.3.2 Delete

Deleting a specific volume is accomplished by setting the state of a volume resource to absent. And there are no
required parameters for this call, but we can provide as many as we wan to narrow the volume we want to delete to a
single one.

The delete task only returns the changed key to reflect whether the volume was present, and therefore was deleted, or
if it wasn’t present in the first place.

To reference a volume for deletion we usually use the same parameters that were used on the create task. If we didn’t
pass any parameters on create, passing none as well on delete will remove that volume:

- storage:
resource: volume
size: 1

- storage:
resource: volume
state: absent

Warning: There is no confirmation required to delete a volume, and once the volume is deleted it is usually
impossible to recover its contents, so we recommend specifying as may parameters as possible on deletion tasks.

We don’t need to provide the same parameters that we used on the create method as long as we provide enough
information. We can use the return value from the create task to do the addressing:

- storage:
resource: volume
size: 1
name: my_volume
backend: backend2

register: volume

- storage:
resource: volume
state: absent
id: "{{volume.id}}"
backend: "{{volume.backend}}"

Note: Keep in mind that there is no global database that stores all the resources IDs. So when using multiple backends,
even if an ID uniquely identifies a resource in all your backends, the Storage Role has no way of knowing on which
backend it is, so the task needs enough parameters to locate it. That’s why in the example above we pass the backend
parameter to the delete task.

When describin the create task we saw how we could create 2 volumes without a name because they had different
sizes. If we wanted to remove those volumes we would have to provide the sizes on the delete task, otherwise the task
would fail because there are 2 volumes that matches the addressing.

- storage:
resource: volume
size: 1

- storage:

(continues on next page)

3.3. Operations 15

Ansible Storage Role Documentation, Release 0.0.1alpha

(continued from previous page)

resource: volume
size: 2

- storage:
resource: volume
state: absent
size: 1

- storage:
resource: volume
state: absent
size: 2

3.3.3 Connect

Connecting a volume to a node is a multi-step process that requires the controller to export and map the volume to the
consumer node first, and for the consumer to connect to the volume. These steps are opaque to the playbooks, where
they are seen as a single task.

Connecting a specific volume to a node is accomplished by setting the state of a volume resource to connected. There
are no specific parameters for the connect task. All parameters are used for the addressing of the volume. Addressing
rules explained before apply here.

The task provides the following keys in the returned value at the rool level:

Key Contents
changed Following standard rules, will be False if the volume was already connected, and True if it wasn’t

but now it is.
type Describes the type of device that is connected, which at the moment can only be block.
path Path to the device that has been added on the system.
addi-
tional_data

(Optional) Provider specific additional information.

If we only have 1 volume on the node the addressing for the connect task is minimal.

- storage:
resource: volume
size: 1

- storage:
resource: volume
state: connected

Creating and connecting a volume is usually just the first step in our automation, and following tasks will rely on the
path key of the returned value to use the volume on the consumer node.

- storage:
resource: volume
size: 1

register: vol

- storage:
resource: volume
state: connected

(continues on next page)

16 Chapter 3. Usage

Ansible Storage Role Documentation, Release 0.0.1alpha

(continued from previous page)

register: conn

- debug:
msg: "Volume {{vol.id}} is now attached to {{conn.path}}"

3.3.4 Disconnect

Disconnecting a volume from a node is a multi-step process that undoes the steps performed during the connection
in reverse. The consumer node detaches the volume from the node, and then the controller unmaps and removes the
exported volume. These steps are opaque to the playbooks, where they are seen as a single task.

Disconnecting a specific volume from a node is accomplished by setting the state of a volume resource to disconnected.
There are no specific parameters for the disconnect task. All parameters are used for the addressing of the volume.
Addressing rules explained before apply here.

The disconnect task only returns the changed key to reflect whether the volume was present, and therefore was dis-
connected, or if it wasn’t present in the first place.

Note: Disconnecting a volume will properly flush devices before proceeding to detach them. If it’s a multipath
device, the multipath will be flushed first and then the individual paths. If flushing is not possible due to connectivity
issues the volume won’t be disconnected.

When we using a single volume the disconnect doesn’t need any additional parameters:

- storage:
resource: volume
size: 1

- storage:
resource: volume
state: connected

- storage:
resource: volume
state: disconnected

It’s when we have multiple volumes that we have to provide more parameters, like we do in all the other tasks.

- storage:
resource: volume
size: 1

- storage:
resource: volume
size: 1
backend: backend2

- storage:
resource: volume
backend: backend2
state: connected

- storage:

(continues on next page)

3.3. Operations 17

Ansible Storage Role Documentation, Release 0.0.1alpha

(continued from previous page)

resource: volume
backend: backend2
state: disconnected

3.3.5 Stats

This is the only task that is meant to be executed on the controller node.

Stats gathering is a provider specific task that return arbitrary data. Each provider specifies what information is
returned in the providers’ section, but they must all return this data as the value for the result key.

And example for the default provider:

- storage:
resource: backend
backend: lvm
state: stats

register: stats

- debug:
msg: "Backend {{stats.result.volume_backend_name}} from vendor {{stats.result.

→˓vendor_name}} uses protocol {{stats.result.storage_protocol}}"

18 Chapter 3. Usage

CHAPTER 4

Examples

On the Introduction and Usage sections we provided some examples and snippets. Here we’ll provide larger examples
to show the specifics of some backends, some interesting concepts, and advanced usage:

4.1 Kaminario backend

In this example we’ll see how to configure the Kaminario K2 backend on a controller node using the default cinderlib
provider.

Note: The Kaminario backend requires the krest PyPi package to be installed on the controller, but we don’t need to
worry about it, because the cinderlib provider takes care of it during the role setup.

- hosts: storage_controller
vars:
storage_backends:

kaminario:
volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.

→˓KaminarioISCSIDriver
san_ip: w.x.y.z
san_login: admin
san_password: nomoresecrets

roles:
- { role: storage, node_type: controller }

4.2 Populating data

Some applications may require specific data to be present in the system before they are run.

Thanks to the Storage Role we can easily automate the deployment of our whole application with custom configuration
in an external disk:

19

Ansible Storage Role Documentation, Release 0.0.1alpha

• Install the application.

• Create a volume.

• Connect the volume.

• Format the volume.

• Populate the default configuration and data.

• Enable and start our application.

- hosts: storage_consumers
roles:

- {role: storage, node_type: consumer}
tasks:

- name: Install our application
package:

name: my-app
state: present

- name: Create the volume
storage:

resource: volume
size: 20

- name: Connect the volume
storage:

resource: volume
state: connected

register: conn

- name: Format the disk
filesystem:

fstype: ext4
dev: "{{conn.path}}"

become: yes

- name: Mount the disk
mount:

path: /mnt/my-app-data
src: "{{conn.path}}"
fstype: ext4
mode: 0777

become: yes

- name: Get default configuration and data
unarchive:

remote_src: yes
src: https://mydomain.com/initial-data.tar.gz
dest: /mnt/my-app-data
owner: myapp
group: myapp

creates: /mnt/my-app-data/lib

- name: Link the data to the disk contents
file:

src: /mnt/my-app-data/lib
dest: /var/lib/my-app
owner: myapp

(continues on next page)

20 Chapter 4. Examples

Ansible Storage Role Documentation, Release 0.0.1alpha

(continued from previous page)

group: myapp
state: link

- name: Link the configuration to the disk contents
file:

src: /mnt/my-app-data/etc
dest: /etc/my-app
owner: myapp
group: myapp
state: link

- name: Enable and start the service
service:

enabled: yes
name: my-app
state: started

4.3 Ceph backend

Unlike other backends, the Ceph/RBD backend does not receive all the backend configuration and credentials via
parameters. It needs 2 configuration files present on the controller node, and the parameters must point to these files.
The role doesn’t know if these configuration files are already present on the controller node, if they must be copied
from the Ansible controller, or from some other locations, so it’s our responsibility to copy them to the controller
node.

Note: The Ceph/RBD backend requires the ceph-common package to be installed on the controller, but we don’t
need to worry about it, because the cinderlib provider takes care of it during the role setup.

Contents of our ceph.conf file:

[global]
fsid = fb86a5b7-6473-492d-865c-60229c986b8a
mon_initial_members = localhost.localdomain
mon_host = 192.168.1.22
auth_cluster_required = cephx
auth_service_required = cephx
auth_client_required = cephx
filestore_xattr_use_omap = true
osd crush chooseleaf type = 0
osd journal size = 100
osd pool default size = 1
rbd default features = 1

Contents of our ceph.client.cinder.keyring file:

[client.cinder]
key = AQAj7eZarZzUBBAAB72Q6CjCqoftz8ISlk5XKg==

Here’s how we would setup our controller using these files:

- hosts: storage_controller
tasks:

(continues on next page)

4.3. Ceph backend 21

Ansible Storage Role Documentation, Release 0.0.1alpha

(continued from previous page)

- file:
path=/etc/ceph/
state=directory
mode: 0755

become: yes
- copy:

src: ceph.conf
dest: /etc/ceph/ceph.conf
mode: 0644

become: yes
- copy:

src: ceph.client.cinder.keyring
dest: /etc/ceph/ceph.client.cinder.keyring
mode: 0600
owner: vagrant
group: vagrant

become: yes

- hosts: storage_controller
vars:
storage_backends:

ceph:
volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_user: cinder
rbd_pool: volumes
rbd_ceph_conf: /etc/ceph/ceph.conf
rbd_keyring_conf: /etc/ceph/ceph.client.cinder.keyring

roles:
- {role: storage, node_type: controller}

Note: The storage role runs a minimum check on the backend during setup, so we need to have the configuration files
present before setting up the role.

By default, the RBD client looks for the keyring under /etc/ceph/ regardless of the configuration of the
rbd_keyring_conf for the backend. If we want to have the keyring in another location we need to point it in the
cinder.conf file.

Here’s an example of how to store the keyring file out of the /etc/ceph directory.

- hosts: storage_controller
tasks:

- file:
path=/home/vagrant/ceph
state=directory
owner=vagrant
group=vagrant

- copy:
src: ceph.conf
dest: /home/vagrant/ceph/ceph.conf

- copy:
src: ceph.client.cinder.keyring
dest: /home/vagrant/ceph/ceph.client.cinder.keyring

- ini_file:
dest=/home/vagrant/ceph/ceph.conf
section=global

(continues on next page)

22 Chapter 4. Examples

Ansible Storage Role Documentation, Release 0.0.1alpha

(continued from previous page)

option=keyring
value=/home/vagrant/ceph/$cluster.$name.keyring

- hosts: storage_controller
vars:
storage_backends:

ceph:
volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_user: cinder
rbd_pool: volumes
rbd_ceph_conf: /home/vagrant/ceph/ceph.conf
rbd_keyring_conf: /home/vagrant/ceph/ceph.client.cinder.keyring

roles:
- {role: storage, node_type: controller}

Attention: Even if we are setting they keyring in the ceph.conf file we must always pass the right
rbd_keyring_conf parameter or we won’t be able to attach from non controller nodes.

4.4 Bulk create

One case were we would be running a creation task on the controller would be if we want to have a pool of volumes
at our disposal.

In this case we’ll want to keep the host empty so it doesn’t get the controller node’s FQDN.

Here’s an example creating 50 volumes of different sizes:

- hosts: storage_controller
vars:

num_disks: 50
storage_backends:

lvm:
volume_driver: 'cinder.volume.drivers.lvm.LVMVolumeDriver'
volume_group: 'cinder-volumes'
iscsi_protocol: 'iscsi'
iscsi_helper: 'lioadm'

roles:
- {role: storage, node_type: controller}

tasks:
- name: "Create {{num_disks}} volumes"

storage:
resource: volume
state: present
name: "mydisk{{item}}"
host: ''
size: "{{item}}"

with_sequence: start=1 end={{num_disks}}

When using this kind of volumes we have to be careful with the addressing, because an undefined host parameter will
default to the node’s FQDN, which won’t match the created volumes.

We can use the name parameter to connect to a volume, or we can use the size, size they are all of different sizes.

4.4. Bulk create 23

Ansible Storage Role Documentation, Release 0.0.1alpha

- hosts: web_server
roles:

- {role: storage, node_type: consumer}
tasks:

- storage:
resource: volume
state: connected
host: ''
size: 20

register: conn

4.5 Migrating data

There may come a time when we want to migrate a volume from one backend to another. For example when moving
volumes from a local testing backend to a real backend.

There are at least two ways of doing it, copying the whole device, or mounting the system and synchronizing the
contents.

For simplicity we’ll only cover the easy case of copying the whole device, which works fine when the destination is a
thick volume. If the destination is a thin volume we would be wasting space.

- hosts: storage_controller
vars:

storage_backends:
lvm:

volume_driver: 'cinder.volume.drivers.lvm.LVMVolumeDriver'
volume_group: 'cinder-volumes'
iscsi_protocol: 'iscsi'
iscsi_helper: 'lioadm'

kaminario:
volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.

→˓KaminarioISCSIDriver
san_ip: w.x.y.z
san_login: admin
san_password: nomoresecrets

roles:
- {role: storage, node_type: controller}

- hosts: storage_consumer
tasks:

- name: Retrieve the existing volume information
storage:

resource: volume
backend: lvm
state: present
name: data-disk

register: vol

- name: Create a new volume on the destination backend using the source
→˓information.

storage:
resource: volume
backend: kaminario
state: present

(continues on next page)

24 Chapter 4. Examples

Ansible Storage Role Documentation, Release 0.0.1alpha

(continued from previous page)

name: "{{vol.name}}"
size: "{{vol.size}}"
host: "{{vol.host}}"

register: new_vol

- storage:
resource: volume
backend: lvm
state: connected
id: "{{vol.id}}"

register: conn

- storage:
resource: volume
backend: kaminario
state: connected
id: "{{new_vol.id}}"

register: new_conn

- name: Copy the data
command: "dd if={{conn.path}} of={{new_conn.path}} bs=1M"
become: true

- storage:
resource: volume
backend: lvm
state: disconnected
id: "{{vol.id}}"

- storage:
resource: volume
backend: kaminario
state: disconnected
id: "{{new_vol.id}}"

4.5. Migrating data 25

Ansible Storage Role Documentation, Release 0.0.1alpha

26 Chapter 4. Examples

CHAPTER 5

Supported storage

Supported backends are separated by type of storage they provide:

• Block devices

• Shared filesystems

• Object storage

5.1 Block devices

Currently both Block storage providers (cinderlib and cinderclient) support the same storage solutions, as they both
use the same driver code. The biggest difference in terms of backend support is that the cinderclient provider relies
on a Cinder service deployment, and that’s how all the drivers have been validated by the automated testing system.
The cinderlib provider relies on the cinderlib library, which is still in the process of automating the testing, and for the
time being has only been manually validated with a limited number of backends.

Unless stated otherwise, drivers have not been validated with cinderlib, so even though they should work, they may
not.

List of supported drivers in alphabetical order:

• Blockbridge EPS

• Ceph/RBD2

• Coho Data NFS1

• Dell EMC PS

• Dell EMC ScaleIO

• Dell EMC Unity

• Dell EMC VMAX FC
2 This driver has been validated with cinderlib as stated in its documentation
1 NFS backends that use an image to provide block storage are not supported yet.

27

https://cinderlib.readthedocs.io/en/latest/validated_backends.html

Ansible Storage Role Documentation, Release 0.0.1alpha

• Dell EMC VMAX iSCSI2

• Dell EMC VNX

• Dell EMC XtremIO FC2

• Dell EMC XtremIO iSCSI2

• Dell Storage Center FC

• Dell Storage Center iSCSI

• DISCO

• DotHill FC

• DotHill iSCSI

• DRBD

• EMC CoprHD FC

• EMC CoprHD iSCSI

• EMC CoprHD ScaleIO

• FalconStor FSS FC

• FalconStor FSS iSCSI

• Fujitsu ETERNUS DX S3 FC

• Fujitsu ETERNUS DX S3 iSCSI

• Generic NFS1

• HGST

• Hitachi HBSD iSCSI

• Hitachi Hitachi NFS1

• Hitachi VSP FC

• Hitachi VSP iSCSI

• HPE 3PAR FC

• HPE 3PAR iSCSI

• HPE LeftHand iSCSI

• HPE MSA FC

• HPE MSA iSCSI

• HPE Nimble FC

• HPE Nimble iSCSI

• Huawei FusionStorage

• Huawei OceanStor FC

• Huawei OceanStor iSCSI

• IBM DS8000

• IBM FlashSystem A9000

• IBM FlashSystem A9000R

28 Chapter 5. Supported storage

Ansible Storage Role Documentation, Release 0.0.1alpha

• IBM FlashSystem FC

• IBM FlashSystem iSCSI

• IBM GPFS

• IBM GPFS NFS1

• IBM GPFS Remote

• IBM Spectrum Accelerate

• IBM Storwize V7000 FC

• IBM Storwize V7000 iSCSI

• IBM SVC FC

• IBM SVC iSCSI

• IBM XIV

• INFINIDAT InfiniBox

• Infortrend Eonstor DS FC

• Infortrend Eonstor DS iSCSI

• Kaminario K2

• Lenovo FC

• Lenovo iSCSI

• LVM2

• NEC M-Series FC

• NEC M-Series iSCSI

• NetApp 7-mode FC

• NetApp 7-mode iSCSI

• NetApp 7-mode NFS1

• NetApp C-mode FC

• NetApp C-mode iSCSI

• NetApp Data ONTAP NFS1

• NetApp E-Series FC

• NetApp E-Series iSCSI

• NexentaEdge iSCSI

• NexentaEdge NFS1

• NexentaStor iSCSI

• NexentaStor NFS1

• Oracle ZFSSA iSCSI

• Oracle ZFSSA NFS1

• ProphetStor FC

• ProphetStor iSCSI

5.1. Block devices 29

Ansible Storage Role Documentation, Release 0.0.1alpha

• Pure FC

• Pure iSCSI

• QNAP iSCSI

• Quobyte USP

• Reduxio

• Sheepdog

• SolidFire2

• Synology iSCSI

• Tegile FC

• Tegile iSCSI

• Tintri

• Veritas Clustered NFS1

• Veritas HyperScale

• Violin V7000 FC

• Violin V7000 iSCSI

• Virtuozzo

• VMware vCenter

• Windows Smbfs

• X-IO ISE FC

• X-IO ISE iSCSI

• XTE iSCSI

• Zadara VPSA iSCSI/iSER

5.2 Shared filesystems

The Storage role has no Shared filesystem provider, so it doesn’t support any backend at the moment.

5.3 Object storage

The Storage role has no Object storage provider, so it doesn’t support any backend at the moment.

30 Chapter 5. Supported storage

CHAPTER 6

Storage Providers

Providers are separated by type of storage they provide:

• Block storage

• Shared filesystems

• Object storage

6.1 Block storage

The Storage Role currently has 2 block storage providers:

• Cinderlib

• Cinderclient

Both use the same storage drivers, supporting the same storage solutions, but using different approaches. The Sup-
ported storage section provides a detailed list of supported backends.

The default provider is cinderlib, as it doesn’t rely on any existing service.

6.1.1 Cinderlib

The cinderlib Storage provider uses the cinderlib Python library to leverage existing Cinder drivers outside of Open-
Stack, without running any of the Cinder services: API, Scheduler, and Volume.

And when we say that cinderlib uses the same drivers as Cinder, we don’t mean that these drivers have been copied
out of the Cinder repository. We mean that we install the same openstack-cinder package used by the Cinder services,
and use the exact same driver code on our controller nodes.

Thanks to the Cinder package, this provider supports a considerable number of different drivers. Most of the storage
drivers included in the package don’t have external dependencies and can run as they are. But there is a small number
of drivers that require extra packages or libraries to manage the storage.

31

Ansible Storage Role Documentation, Release 0.0.1alpha

The cinderlib provider has the mechanism to automatically install these packages when deploying a controller based
on the backend configuration. At this moment the drivers supporting this automatic installation is not complete, though
it is growing.

As we mentioned, the provider uses the openstack-cinder package, which has its advantages, but comes with the
drawback of requiring more dependencies than needed, such as the messaging and service libraries.

This, together with the specific driver requirements that we may be using, make the cinderlib provider somewhat heavy
in terms of packages being installed. Making the most common deployment model to have only one controller node
for all the consumers. One way to do it is using the node running the Ansible engine as the controller.

There is only 1 fixed parameter that the cinderlib provider requires:

Key Contents
volume_driver Namespace of the driver.

All other parameters depend on the driver we are using, and we recommend looking into the specific driver configura-
tion page for more information on what these parameters are. If the driver has been validated for the cinderlib library
we can see which parameters where used in its documentation.

Here is an example for XtremIO storage:

- hosts: storage_controller
vars:
storage_backends:

xtremio:
volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
san_ip: w.x.y.z
xtremio_cluster_name: CLUSTER-NAME
san_login: admin
san_password: nomoresecrets

roles:
- {role: storage, node_type: controller}

When working with the cinderlib provider there’s one thing we must be aware of, the metadata persistence.

Cinder drivers are not required to be stateless, so most of them store metadata in the Cinder database to reduce the
number of queries to the storage backend.

Since we use the Cinder drivers as they are, we cannot be stateless either. We’ll use the metadata persistence plugin
mechanism to store the driver’s information. At this moment there’s only one plugin available, the database one,
allowing us to store the metadata in many different database engines.

Attention: If the metadata is lost, then the cinderlib role will no longer be able to use any of the resource it has
created.

Proper care is recommended when deciding where to store the metadata. It can be stored in an external database,
in a replicated shared filesystem, etc.

The default configuration is to store it in a SQLite file called storage_cinderlib.sqlite in the SSH user’s home directory:

storage_cinderlib_persistence:
storage: db
connection: sqlite:///storage_cinderlib.sqlite

But we can change it to use other databases passing the connection information using SQLAlchemy database URLs
format in the connection key.

32 Chapter 6. Storage Providers

https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-drivers.html
https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-drivers.html
https://cinderlib.readthedocs.io/en/latest/validated_backends.html
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Ansible Storage Role Documentation, Release 0.0.1alpha

For example we could use a MySQL database:

- hosts: storage_controller
vars:
storage_cinderlib_persistence:

storage: db
connection: mysql+pymysql://root:stackdb@127.0.0.1/cinder?charset=utf8

In the future there will be more metadata persistence plugins, and they will be referenced in cinderlib’s metadata
persistence plugins documentation.

Having covered the controller nodes, we’ll now look into the consumer nodes.

The consumer code is executed on a consumer node when we want to connect or disconnect a volume to the node. To
achieve this it implements 3 functions:

• Connect volume.

• Disconnect volume.

• Get connector information for the node.

Please have a look at the Consumer requirements section for relevant information on the dependencies for connections
on the consumer node.

Connection and disconnections are mostly managed using the OS-Brick. Although there are some exceptions like for
Ceph/RBD connections where we manage them ourselves.

To speed things when we receive a call to connect a volume that’s already connected, we use a simple SQLite database.
This may change in the future.

This database is stored by default on the SSH user’s home using filename storage_cinderlib_consumer.sqlite. But we
can change the location with the storage_cinderlib_consumer_defaults variable. Default configuration is:

storage_cinderlib_consumer_defaults:
db_file: storage_cinderlib_consumer.sqlite

Note: In future releases the use of the SQLite database on the consumer may be removed.

6.1.2 Cinderclient

The cinderclient Storage provider wraps an OpenStack Cinder service to expose it in Ansible using the Storage Role
abstraction.

Communication between the Storage provider and the Cinder service is accomplished via Cinder’s well defined REST
API.

Relying on an external Cinder service to manage our block storage greatly reduces the dependencies required by the
controller nodes. The only dependency is the python2-cinderclient package, making controllers for the cinder provider
very light.

With this provider, deploying all our nodes as controller and consumer makes sense.

The cinderclient provider needs the following configuration parameters to connect to a Cinder service:

6.1. Block storage 33

https://cinderlib.readthedocs.io/en/latest/topics/metadata.html
https://cinderlib.readthedocs.io/en/latest/topics/metadata.html
https://github.com/openstack/os-brick

Ansible Storage Role Documentation, Release 0.0.1alpha

Key Contents
username OpenStack user name.
password Password for OpenStack user.
project_name OpenStack project/tenant name.
region_name OpenStack region name.
auth_url URL for the authentication endpoint.
volume_type Cinder volume type to use. When left undefined provider will use Cinder’s default volume type.

There are no global configuration options for the cinderclient provider, so values stored in the stor-
age_cinderclient_defaults variable won’t be used.

Note: Current implementation only supports Cinder services that use Keystone as the identity service. Standalone
Cinder is not currently supported.

Here’s a configuration example for the cinderclient provider showing how to use the default volume type from Cinder:

- hosts: storage_controller
vars:
storage_backends:

default:
provider: cinderclient
password: nomoresecret
auth_url: http://192.168.1.22/identity
project_name: demo
region_name: RegionOne
username: admin

roles:
- {role: storage, node_type: controller}

Using a specific volume type is very easy, we just need to add the volume_type parameter:

- hosts: storage_controller
vars:
storage_backends:

default:
provider: cinderclient
password: nomoresecret
auth_url: http://192.168.1.22/identity
project_name: demo
region_name: RegionOne
username: admin
volume_type: ceph

roles:
- {role: storage, node_type: controller}

Since the cinderclient and cinderlib providers use the same storage driver code, the connection information to the
storage obtained by the controller node follows the same format. Since the connection information is the same,
both providers use the same consumer library code to present the storage on the consumer node. Please refer to the
Cinderlib provider section for more information on this consumer module.

Note: Managed resources will be visible within OpenStack, and therefore can be managed using Horizon (the web
interface), or the cinderclient command line. We don’t recommend mixing management tools, so it’d be best to only
manage Storage Role resources using Ansible. To help isolate our resources we recommend using a specific tenant for

34 Chapter 6. Storage Providers

Ansible Storage Role Documentation, Release 0.0.1alpha

the Storage Role.

6.2 Shared filesystems

There are no Shared filesystem providers at the moment.

6.3 Object storage

There are no Object storage providers at the moment.

6.2. Shared filesystems 35

Ansible Storage Role Documentation, Release 0.0.1alpha

36 Chapter 6. Storage Providers

CHAPTER 7

Internals

In this section we’ll go over the Storage Role internals to explain the architecture, flows, and other implementation
details.

This information should help debug issues on existing roles, and provide details on how to implement new roles.

Warning: This section is still in an early conceptualization phase, so it’s not worth reading.

Todo: Do this whole section

Topics to cover:

• Installation tasks for the providers.

• Driver specific installation tasks for the cinderlib provider.

• How we send work to a controller when requested on the consumer.

• How we separate methods on the controller and consumer code.

• Data returned by the different method on the controller and consumer.

• How to create a new provider using storage_base.py classes.

• How a provider can reuse the cinderlib consumer code.

• Describe workarounds that have been implemented using callback and lookup plugins.

• Explain why the work was split between consumer and controller:

– less requirements on consumer nodes

– consumers don’t need access to the management network

– reuse consumer code/requirements

• Example of a workflow for attach or detach.

37

Ansible Storage Role Documentation, Release 0.0.1alpha

- hosts: storage_consumers
roles:

- {role: storage, node_type: consumer}
tasks:

- name: Create volume
storage:

resource: volume
state: present
size: 1

register: vol

- name: Connect volume
storage:

resource: volume
state: connected

register: conn

- debug:
msg: "Volume {{ vol.id }} attached to {{ conn.path }}"

- name: Disconnect volume
storage:

resource: volume
state: disconnected

- name: Delete volume
storage:

resource: volume
state: absent

This will create a volume for each consumer host and attach it to the node, then display the path where it has been
connected before proceeding to disconnect and delete it.

A descriptive explanation of above playbook is:

• Initialize the controller node: Installs required libraries on the controller

• For each consumer node: - Install required libraries on the consumer node - Create a volume: Created on the
controller and associated to consumer - Attach the volume created for that node:

– Controller node maps the volume to the node (other nodes can’t connect)

– Consumer uses iSCSI initiator to attach the volume

– Display where the volume has been attached

– Detach the volume:

* Consumer detaches the volume

* Controller unmaps the volume

38 Chapter 7. Internals

CHAPTER 8

Future work

The project being at the early development stages means that the current features serve mostly to demonstrate the
power behind a common storage abstraction, but are somewhat limited.

There is work being done to add new features, and the next planned features are:

• Volume cloning.

• Snapshot management.

• Extend volume.

• Amazon’s Elastic Block Storage (EBS).

• Manila provider for Shared filesystem.

• S3 provider for object storage.

• GCS provider for object storage.

39

	Introduction
	Features
	Concepts
	Configuration
	Example

	Installation
	Requirements
	Consumer requirements

	Usage
	Configuration
	Resource addressing
	Operations

	Examples
	Kaminario backend
	Populating data
	Ceph backend
	Bulk create
	Migrating data

	Supported storage
	Block devices
	Shared filesystems
	Object storage

	Storage Providers
	Block storage
	Shared filesystems
	Object storage

	Internals
	Future work

